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Abstract 

The failure process of self-healing microcapsule filled epoxy composites was investigated 

with Acoustic Emission (AE) measurement during tapered double cantilever beam (TDCB) 

tests. Unfilled, epoxy microcapsule filled and self-healing microcapsule (dual-

microcapsules consisting of epoxy capsules and trifluoromethanesulfonic acid (TfOH) 

capsules) filled epoxy matrix specimens were compared. It was found that with acoustic 

emission measurements reliable data can be retrieved about the nature and progress of 

crack propagation and failure. Comparing the unfilled and the microcapsule filled 

specimens, considerably more AE hits were detected in the latter cases due to the cracks of 

capsules and capsule-matrix debonding, which was confirmed by scanning electron 

microscopy investigations. Also, key differences were observed in the shape of the sum of 

AE hits curves and amplitude ranges of detected AE hits. Uniform distribution of the 

healing agent was demonstrated by energy-dispersive X-ray spectroscopy.  
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1. Introduction 
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 Multi-functional, self-healing materials are nowadays an important topic in material 

science as more and more polymer and polymer composite parts are used in safety-critical 

applications. Self-healing polymers can provide increased service time and reliability by the 

repair of the emerging micro-cracks during operation [1-3]. While the development of self-

healing polymer resin systems is in progress, the failure methods of the complex self-

healing systems have to be also thoroughly investigated.  

 Many researchers use the concept of solid polymer shells filled with liquid healing 

agent, dispersed in polymer matrix, in order to achieve the desired repairing capability [4]. 

Functionally, as the propagating microcrack reaches and cracks open the solid shell, the 

released low-viscosity healing agent fills the crack due to capillary action and polymerizes 

on contact with the catalyst. Despite their similar approach, distinct methods reported a 

variety of quality and preparation processes of self-healing polymers since the 

breakthrough made by White and co-workers [5]. One of the most extensively used healing 

agent is dicyclopentadiene (DCPD) [5-10] contained in urea-formaldehyde (UF) copolymer 

shells. It works through ring-opening metathesis polymerization (ROMP) and requires solid 

(Grubbs’ first generation) catalyst to be dispersed in the applied epoxy matrix. Others use 

different materials for the shells [11], or stick the catalyst to its wall instead of dispersing in 

the matrix [12]. Another widely used healing agent is epoxy resin [13-16], which needs a 

hardener component to react with so as to establish cross links, hence curing the crack. 

Considering the processing and the application circumstances, each method may require 

further parameter optimization by using alternative catalysts [17], smaller capsule sizes 

[18], etc. It is, however, always necessary to analyze the mechanical and other properties of 

the ready composite and set the results against the reference samples to conclude the 



microcapsules’ and the healing agents’ effects to the material. The rupture of tapered 

double cantilever beam (TDCB) samples and acoustic emission (AE) monitoring [19] 

provide information about the proceeding failure, whilst scanning electron microscope 

(SEM) analysis visualizes the result on the surface of the crack [20]. With energy-

dispersive X-ray spectroscopy (EDS), the elemental map of a fracture surface can be 

prepared, making the visualization of the self-healing compound possible [21, 22]. 

 The objective of the present work is to apply the AE technique to analyze the 

above-mentioned self-healing composites fracture behavior during TDCB testing to acquire 

further information on the mechanism and efficiency of the capsules’ cracking and healing 

capability for future optimization. 

 

2. Material and methods 

 

2.1. Materials 

High performance cycloaliphatic epoxy resin (trade name: Araldite® CY 179), supplied 

by Huntsman Advanced Materials, was used as the matrix. Methyl hexahydrophthalic 

anhydride (MHHPA) purchased from Energy Chemical, Shanghai, China, acted as its 

hardener. Hycat™ AO-4, produced by Dimension Technology Chemical Systems, Inc., was 

employed as the catalyst. Diglycidyl ether of bisphenol A (trade name: EPON 828), 

supplied by Shell Co., served as the polymerizable component of the healing agent. TfOH 

was obtained from Sigma–Aldrich and acts as the hardener component of the healing agent. 



Preparation of the healing capsules, including epoxy microcapsules (~130 m) and 

TfOH microcapsules (~6 m), and self-healing epoxy composites has been described 

elsewhere [23]. 

The TDCB specimens with groove length of 55 mm were made following Brown et al. 

[24] For the convenience of discussion, three types of TDCB specimens were fabricated 

and characterized. They are: unfilled epoxy (“A” type), epoxy filled with 10 wt% epoxy-

loaded capsules (“B” type), and epoxy filled with 10 wt% epoxy capsules and 0.6 wt% 

TfOH capsules (“C” type).  

2.2. Experimental 

 

The TDCB tests were carried out using a Zwick Z250 (Zwick, Ulm, Germany) computer 

controlled tensile tester equipped with a 20 kN capacity load cell. The test speed was 

0.3 mm min-1. The specimens were pre-notched by a sharp razor blade to facilitate defined 

crack formation. The crack propagation was monitored by a digital camera during the tests 

(Fig 1). 

The Acoustic Emission (AE) signals emerging during the failure of the specimens were 

recorded by a Sensophone AEPC-40/4 (Gereb & Co., Budapest, Hungary) type device 

equipped with a Physical Acoustic Corporation Micro30S (Physical Acoustic Corporation, 

Princeton, USA) microphone. The microphone was fixed to the surface of the specimen by 

a plastic clip. The contact surface of the microphone and the specimen was covered with 



silicon grease. The recorder frequency range was 100 – 600 kHz, and the applied threshold 

was set to 20 dB. Logarithmic amplifying was applied. 

 

Fig 1 Test setup of the TDCB test (left) and positioning of the AE sensor and the crack 

tracking camera (right) 

 

Scanning Electron Microscopy (SEM) investigations were carried out on the fracture 

surfaces of the broken specimens by a JEOL JSM-6380LA (Jeol Ltd., Akishima, Japan) 

microscope. The sample surfaces were gold sputter coated to achieve electrical 

conductivity. 

Energy-dispersive X-ray spectroscopy (EDS) investigations were carried out on the fracture 

surface of a broken self-healed specimen (C Healed) using a Zeiss SEM (Carl Zeiss AG, 

Oberkochen, Germany) equipped by an EDAX EDS device with an Octane Silicon Drift 

Detector (EDAX Inc., Mahwah, USA). The sample was gold spur coated to achieve surface 

electrical conductivity. 

 

3. Results and discussion 



During the TDCB tests, samples A and B were loaded by constant crosshead displacement 

up to complete fracture (50 mm crack front position, Fig 2). Sample C was loaded up to the 

first crack jump, after which the crosshead reversed to close the crack, 5 minutes curing 

time was provided for the healing process and, finally, in a second constant crosshead 

displacement loading, the specimen was tested to complete fracture.  

 

Fig 2 Recorded force and crack front position curves of an unfilled (A) specimen as a 

function of crack opening displacement 

 

The tests showed good results. The crack tracking was accurate, also the AE measurements 

provided a sufficient number of hits. The position of the sum of all hits jumps corresponded 

to the actual crack jumps present in the force – crack opening displacement curves recorded 

by the tensile tester and the visual crack front propagation observations (Fig 3).  



 

 

Fig 3 Recorded force and sum of AE hits curves of an unfilled (A), epoxy microcapsule 

filled (B), and a self-healing specimen before (C) and after healing (C Healed) as a function 

of crack opening displacement 

 

Many more hits were recorded in case of the microcapsule filled samples (A – 289, B - 488, 

C – 136, C Healed – 256, C+C Healed - 392). Also, the shapes of the sum of hits curves are 

quite different: significantly more hits were recorded in the case of the microcapsule filled 

samples (B, C) before the first crack jump. This can indicate the cracking of the 

microcapsules and damages at the microcapsule-resin interface. Also, there is a significant 



difference in the progress of the curve: in the case of the neat resin sample (A) the sum of 

all hits curve shows a prompt jump at the crack jump (Fig 3 – A), while in the case of the 

microcapsule filled samples (Fig 3 – B and C) the jump is not so steep, but is foreshadowed 

by a constant, steady increase in the sum of all hits curve.  

In the case of the healed sample, the start of the cracking of the specimen at the healed 

surface can be clearly observed at around 1 mm crack opening displacement; at the second 

peak, the run of the sum of all hits curve is similar to the first recorded curve of the same 

specimen. It can also be observed that the high amplitude hit for the first crack jump is 

missing, only the middle range amplitude hits are present.  

The analysis of the AE amplitudes shows that the crack jump can be identified by the high 

amplitude hits above 100 dB. For better comparison, we have prepared the histograms of 

the AE amplitudes and the AE energies of the samples (Fig 4-5). To be able to compare the 

self-healing samples to the reference samples (A and B), we had to add the two test sections 

of the self-healing sample (the total hits of the C and C Healed tests), because this 

represents the cracking of the whole sample. In the comparison of the microcapsule filled 

(B and C+C Healed) samples to the neat resin sample, clear differences can be seen. In the 

case of the AE amplitudes, the unfilled microcapsule containing samples provided 

significantly more high amplitude hits (above the 50 dB region), the self healing agent 

filled microcapsule containing samples provided much more low amplitude hits (below 30 

dB). The difference between the unfilled and filled microcapsule containing samples can be 

explained by their different acoustic behaviour, the self-healing agent filled into the 

microcapsules can have a damping effect.  



 

Fig 4 AE Amplitude histograms of the tested samples 

 

Fig 5 AE energy histograms of the tested samples 

 

To investigate their fracture behavior SEM, micrographs have been prepared from the 

fracture surfaces of the broken specimens (A, B and C Healed). Some characteristic 

micrographs are presented in Fig 6-8. The micrographs confirm the presence of the 

microcapsules in samples B and C. In some regions, debonding along the interface between 

the microcapsules and the matrix can be observed. Some microcapsules are fractured. 



Instead of the clear splitting of the capsules, only holes in some capsule shells are present. 

This can indicate weak adhesion between the matrix and the microcapsules, so most of the 

differences in the AE data are caused by the debonding. 

 

Fig 6 SEM micrograph of sample “A” 

 

Fig 7 SEM micrographs of sample “B” 



 

Fig 8 SEM micrographs of sample “C Healed” 

 

Energy-dispersive X-ray spectroscopy (EDS) investigations were carried out on the fracture 

surface of a broken self-healed specimen (C Healed) to check if the sulphur containing self-

healing agent has reached the crack. The map of the detected sulfur (which originated from 

TfOH) is presented in Fig 9. In the map, sulfur is almost uniformly present in the whole 

fracture surface, except some locations, mostly at the microcapsule surfaces. Clearly, the 

healing agent has been released from the broken microcapsules and covered the crack 

surface as expected. 



 

Fig 9 SEM micrograph of sample “C Healed” with the detected sulphur location EDS 

overlay (purple dots) 

 

4. Conclusions 

While the wanted self-healing property develops, microcapsules cause significant 

change in the material's integrity, and hence in its mechanical properties. In the case of 

microencapsulated self-healing polymer composites, the fracture of the microcapsules 

during the failure process is one of the key requirements among others - such as the quality 

and the quantity components taking part in the chemical reaction, the healing performance 

is therefore controlled not only by chemical, but mechanical properties as well. 

With acoustic emission, reliable data were collected by detecting the numbers of 

hits in function of displacement and crack propagation, which correlates with the progress 

of failure. The sum of these hits were significantly higher in case of the encapsulated 

material, which can indicate cracking of the capsules and the capsule-matrix interface. 



Further information can be retrieved from the AE amplitudes in each case as crack jumps 

can be identified by higher amplitude hits, for instance. 

Adhesion between capsules and matrix should have sufficient strength to prevent 

the separation of the interface to give a full play to self-healing. Self-healing behaviour was 

observed in specimens, although SEM images have shown both fractured and separated 

microcapsules. This means that, after strengthening the adhesion, the same performance 

would be achievable even with lower capsule ratio. 

Uniform distribution of the healing agent, essential to create uniformly healed 

material, was observed on the crack surface by using energy-dispersive X-ray spectroscopy. 
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Figure captions: 

Fig 1 Test setup of the TDCB test (left) and positioning of the AE sensor and the crack 

tracking camera (right) 

Fig 2 Recorded force and crack front position curves of an unfilled (A) specimen as a 

function of crack opening displacement 

Fig 3 Recorded force and sum of AE hits curves of an unfilled (A), epoxy microcapsule 

filled (B), and a self-healing specimen before (C) and after healing (C Healed) as a function 

of crack opening displacement 

Fig 4 AE Amplitude histograms of the tested samples 

Fig 5 AE energy histograms of the tested samples 

Fig 6 SEM micrograph of sample “A” 

Fig 7 SEM micrographs of sample “B” 

Fig 8 SEM micrographs of sample “C Healed” 

Fig 9 SEM micrograph of sample “C Healed” with the detected sulphur location EDS 

overlay (purple dots) 

 


